extension | φ:Q→Out N | d | ρ | Label | ID |
(C22xS3).1D4 = C23.5D12 | φ: D4/C1 → D4 ⊆ Out C22xS3 | 48 | 8- | (C2^2xS3).1D4 | 192,301 |
(C22xS3).2D4 = Q8:5D12 | φ: D4/C1 → D4 ⊆ Out C22xS3 | 24 | 4+ | (C2^2xS3).2D4 | 192,381 |
(C22xS3).3D4 = C42:5D6 | φ: D4/C1 → D4 ⊆ Out C22xS3 | 48 | 4 | (C2^2xS3).3D4 | 192,384 |
(C22xS3).4D4 = C22:C4:D6 | φ: D4/C1 → D4 ⊆ Out C22xS3 | 48 | 4 | (C2^2xS3).4D4 | 192,612 |
(C22xS3).5D4 = D12:18D4 | φ: D4/C1 → D4 ⊆ Out C22xS3 | 24 | 8+ | (C2^2xS3).5D4 | 192,757 |
(C22xS3).6D4 = D12.39D4 | φ: D4/C1 → D4 ⊆ Out C22xS3 | 48 | 8+ | (C2^2xS3).6D4 | 192,761 |
(C22xS3).7D4 = C6.C22wrC2 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).7D4 | 192,231 |
(C22xS3).8D4 = (C2xC4).21D12 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).8D4 | 192,233 |
(C22xS3).9D4 = C6.(C4:D4) | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).9D4 | 192,234 |
(C22xS3).10D4 = S3xC23:C4 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 24 | 8+ | (C2^2xS3).10D4 | 192,302 |
(C22xS3).11D4 = D6:C8:11C2 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).11D4 | 192,338 |
(C22xS3).12D4 = C3:C8:1D4 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).12D4 | 192,339 |
(C22xS3).13D4 = D4:3D12 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).13D4 | 192,340 |
(C22xS3).14D4 = C3:C8:D4 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).14D4 | 192,341 |
(C22xS3).15D4 = D4.D12 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).15D4 | 192,342 |
(C22xS3).16D4 = C24:1C4:C2 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).16D4 | 192,343 |
(C22xS3).17D4 = Q8.11D12 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).17D4 | 192,367 |
(C22xS3).18D4 = Q8:4D12 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).18D4 | 192,369 |
(C22xS3).19D4 = C3:(C8:D4) | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).19D4 | 192,371 |
(C22xS3).20D4 = D6:C8.C2 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).20D4 | 192,373 |
(C22xS3).21D4 = C8:Dic3:C2 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).21D4 | 192,374 |
(C22xS3).22D4 = C3:C8.D4 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).22D4 | 192,375 |
(C22xS3).23D4 = C42:3D6 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 48 | 4 | (C2^2xS3).23D4 | 192,380 |
(C22xS3).24D4 = C24:7D4 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).24D4 | 192,424 |
(C22xS3).25D4 = C4.Q8:S3 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).25D4 | 192,425 |
(C22xS3).26D4 = C8.2D12 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).26D4 | 192,426 |
(C22xS3).27D4 = C6.(C4oD8) | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).27D4 | 192,427 |
(C22xS3).28D4 = C2.D8:S3 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).28D4 | 192,444 |
(C22xS3).29D4 = C8:3D12 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).29D4 | 192,445 |
(C22xS3).30D4 = C2.D8:7S3 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).30D4 | 192,447 |
(C22xS3).31D4 = C24.25D6 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).31D4 | 192,518 |
(C22xS3).32D4 = C24.27D6 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).32D4 | 192,520 |
(C22xS3).33D4 = (C2xC4):3D12 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).33D4 | 192,550 |
(C22xS3).34D4 = (C2xC12).289D4 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).34D4 | 192,551 |
(C22xS3).35D4 = Dic6:D4 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).35D4 | 192,717 |
(C22xS3).36D4 = C24:12D4 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).36D4 | 192,718 |
(C22xS3).37D4 = D12:7D4 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).37D4 | 192,731 |
(C22xS3).38D4 = Dic6.16D4 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).38D4 | 192,732 |
(C22xS3).39D4 = C24:8D4 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).39D4 | 192,733 |
(C22xS3).40D4 = D12.17D4 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).40D4 | 192,746 |
(C22xS3).41D4 = C24.36D4 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 96 | | (C2^2xS3).41D4 | 192,748 |
(C22xS3).42D4 = SD16:D6 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 48 | 4 | (C2^2xS3).42D4 | 192,1327 |
(C22xS3).43D4 = D8:4D6 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 48 | 8- | (C2^2xS3).43D4 | 192,1332 |
(C22xS3).44D4 = D24:C22 | φ: D4/C2 → C22 ⊆ Out C22xS3 | 48 | 8+ | (C2^2xS3).44D4 | 192,1336 |
(C22xS3).45D4 = D6:(C4:C4) | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).45D4 | 192,226 |
(C22xS3).46D4 = D4:2S3:C4 | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).46D4 | 192,331 |
(C22xS3).47D4 = D6:D8 | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).47D4 | 192,334 |
(C22xS3).48D4 = D6:SD16 | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).48D4 | 192,337 |
(C22xS3).49D4 = C4:C4.150D6 | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).49D4 | 192,363 |
(C22xS3).50D4 = D6:2SD16 | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).50D4 | 192,366 |
(C22xS3).51D4 = D6:1Q16 | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).51D4 | 192,372 |
(C22xS3).52D4 = (S3xC8):C4 | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).52D4 | 192,419 |
(C22xS3).53D4 = C8:8D12 | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).53D4 | 192,423 |
(C22xS3).54D4 = C8.27(C4xS3) | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).54D4 | 192,439 |
(C22xS3).55D4 = D6:2D8 | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).55D4 | 192,442 |
(C22xS3).56D4 = D6:2Q16 | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).56D4 | 192,446 |
(C22xS3).57D4 = C4:(D6:C4) | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).57D4 | 192,546 |
(C22xS3).58D4 = D6:3D8 | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).58D4 | 192,716 |
(C22xS3).59D4 = C24:14D4 | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).59D4 | 192,730 |
(C22xS3).60D4 = D6:3Q16 | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).60D4 | 192,747 |
(C22xS3).61D4 = C2xD8:3S3 | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).61D4 | 192,1315 |
(C22xS3).62D4 = C2xQ8.7D6 | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).62D4 | 192,1320 |
(C22xS3).63D4 = C2xD24:C2 | φ: D4/C4 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).63D4 | 192,1324 |
(C22xS3).64D4 = S3xC4oD8 | φ: D4/C4 → C2 ⊆ Out C22xS3 | 48 | 4 | (C2^2xS3).64D4 | 192,1326 |
(C22xS3).65D4 = C22.58(S3xD4) | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).65D4 | 192,223 |
(C22xS3).66D4 = (C2xC4):9D12 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).66D4 | 192,224 |
(C22xS3).67D4 = D6:C4:C4 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).67D4 | 192,227 |
(C22xS3).68D4 = C4:C4:19D6 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 48 | | (C2^2xS3).68D4 | 192,329 |
(C22xS3).69D4 = D4:(C4xS3) | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).69D4 | 192,330 |
(C22xS3).70D4 = D4:D12 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 48 | | (C2^2xS3).70D4 | 192,332 |
(C22xS3).71D4 = D6.D8 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).71D4 | 192,333 |
(C22xS3).72D4 = D6:5SD16 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 48 | | (C2^2xS3).72D4 | 192,335 |
(C22xS3).73D4 = D6.SD16 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).73D4 | 192,336 |
(C22xS3).74D4 = (S3xQ8):C4 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).74D4 | 192,361 |
(C22xS3).75D4 = Q8:7(C4xS3) | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).75D4 | 192,362 |
(C22xS3).76D4 = D6.1SD16 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).76D4 | 192,364 |
(C22xS3).77D4 = Q8:3D12 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).77D4 | 192,365 |
(C22xS3).78D4 = D6:Q16 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).78D4 | 192,368 |
(C22xS3).79D4 = D6.Q16 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).79D4 | 192,370 |
(C22xS3).80D4 = S3xC4wrC2 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 24 | 4 | (C2^2xS3).80D4 | 192,379 |
(C22xS3).81D4 = C8:(C4xS3) | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).81D4 | 192,420 |
(C22xS3).82D4 = D6.2SD16 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).82D4 | 192,421 |
(C22xS3).83D4 = D6.4SD16 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).83D4 | 192,422 |
(C22xS3).84D4 = C8:S3:C4 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).84D4 | 192,440 |
(C22xS3).85D4 = D6.5D8 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).85D4 | 192,441 |
(C22xS3).86D4 = D6.2Q16 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).86D4 | 192,443 |
(C22xS3).87D4 = C24.59D6 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 48 | | (C2^2xS3).87D4 | 192,514 |
(C22xS3).88D4 = C24.23D6 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).88D4 | 192,515 |
(C22xS3).89D4 = D6:C4:6C4 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).89D4 | 192,548 |
(C22xS3).90D4 = D12:D4 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 48 | | (C2^2xS3).90D4 | 192,715 |
(C22xS3).91D4 = D6:6SD16 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 48 | | (C2^2xS3).91D4 | 192,728 |
(C22xS3).92D4 = D6:8SD16 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).92D4 | 192,729 |
(C22xS3).93D4 = D6:5Q16 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).93D4 | 192,745 |
(C22xS3).94D4 = C2xC23.9D6 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).94D4 | 192,1047 |
(C22xS3).95D4 = C2xD6.D4 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).95D4 | 192,1064 |
(C22xS3).96D4 = S3xC22.D4 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 48 | | (C2^2xS3).96D4 | 192,1211 |
(C22xS3).97D4 = C2xD8:S3 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 48 | | (C2^2xS3).97D4 | 192,1314 |
(C22xS3).98D4 = C2xQ8:3D6 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 48 | | (C2^2xS3).98D4 | 192,1318 |
(C22xS3).99D4 = C2xD4.D6 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).99D4 | 192,1319 |
(C22xS3).100D4 = C2xQ16:S3 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 96 | | (C2^2xS3).100D4 | 192,1323 |
(C22xS3).101D4 = S3xC8:C22 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 24 | 8+ | (C2^2xS3).101D4 | 192,1331 |
(C22xS3).102D4 = S3xC8.C22 | φ: D4/C22 → C2 ⊆ Out C22xS3 | 48 | 8- | (C2^2xS3).102D4 | 192,1335 |
(C22xS3).103D4 = S3xC2.C42 | φ: trivial image | 96 | | (C2^2xS3).103D4 | 192,222 |
(C22xS3).104D4 = S3xD4:C4 | φ: trivial image | 48 | | (C2^2xS3).104D4 | 192,328 |
(C22xS3).105D4 = S3xQ8:C4 | φ: trivial image | 96 | | (C2^2xS3).105D4 | 192,360 |
(C22xS3).106D4 = S3xC4.Q8 | φ: trivial image | 96 | | (C2^2xS3).106D4 | 192,418 |
(C22xS3).107D4 = S3xC2.D8 | φ: trivial image | 96 | | (C2^2xS3).107D4 | 192,438 |
(C22xS3).108D4 = C2xS3xC22:C4 | φ: trivial image | 48 | | (C2^2xS3).108D4 | 192,1043 |
(C22xS3).109D4 = C2xS3xC4:C4 | φ: trivial image | 96 | | (C2^2xS3).109D4 | 192,1060 |
(C22xS3).110D4 = C2xS3xD8 | φ: trivial image | 48 | | (C2^2xS3).110D4 | 192,1313 |
(C22xS3).111D4 = C2xS3xSD16 | φ: trivial image | 48 | | (C2^2xS3).111D4 | 192,1317 |
(C22xS3).112D4 = C2xS3xQ16 | φ: trivial image | 96 | | (C2^2xS3).112D4 | 192,1322 |